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Abstract

In this paper, the behavior of two parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two
half piezoelectric materials planes subjected to an anti-plane shear loading is investigated by using Schmidt method. By
using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These
equations are solved using the Schmidt method. This process is quite different from that adopted previously. The
normalized stress and electrical displacement intensity factors are determined for different geometric and property
parameters for permeable crack surface conditions. Numerical examples are provided to show the effect of the geometry
of the interacting cracks, the thickness and the materials constants of the piezoelectric layer upon the stress and the
electric displacement intensity factor of the cracks. Contrary to the impermeable crack surface condition solution, it is
found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than
the results for the impermeable crack surface conditions.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed and undergo de-
formation when subjected to an electric field. The coupling nature of piezoelectric materials has attracted
wide applications in electric-mechanical and electric devices, such as electric-mechanical actuators, sensors
and structures. When subjected to mechanical and electrical loads in service, these piezoelectric materials
can fail prematurely due to defects, e.g. cracks, holes, etc. arising during their manufacture process.
Therefore, it is of great importance to study the electro-elastic interaction and fracture behavior of pi-
ezoelectric materials. Moreover, it is known that the failure of solids results from the cracks, and in most
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cases, the unstable growth of the crack is brought about by the external loads. So, the study of the fracture
mechanics of piezoelectric materials is much important in recent research, especially when multiple inter-
face cracks are involved.

In the theoretical studies of crack problems, several different electric boundary conditions at the crack
surfaces have been proposed by numerous researchers. For example, for the sake of analytical simplifi-
cation, the assumption that the crack surfaces are impermeable to electric fields was adopted by Deeg
(1980), Pak (1990, 1992), Sosa and Pak (1990), Sosa (1991, 1992), Suo et al. (1992), and Gao et al. (1997),
etc. In this model, the assumption of the impermeable cracks refers to the fact that the crack surfaces are
free of surface charge and thus the electric displacement vanish insides the crack. In fact, cracks in pi-
ezoelectric materials consist of vacuum, air or some other gas. This requires that the electric fields can
propagate through the crack, so the electric displacement component perpendicular to the crack surfaces
should be continuous across the crack surfaces. Along this line, Zhank and Hack (1992) analyzed crack
problems in piezoelectric materials. In addition, usually the conducting cracks which are filled with con-
ducting gas or liquid are also applied to be a kind of simplified cracks models in piezoelectric materials by
many researchers, such as McMeeking (1989) and Suo (1993). Dunn (1994), Zhang and Tong (1996), and
Sosa and Khutoryansky (1999) avoided the common assumption of electric impermeability and utilized
more accurate electric boundary conditions at the rim of an elliptical flaw to deal with anti-plane problems
in piezoelectricity. They analyzed the effects of electric boundary conditions at the crack surfaces on the
fracture mechanics of piezoelectric materials.

Layered materials can be used to manufacture high performance structures in order to achieve a high
strength-to-weight ratio. Therefore, the analysis of laminated piezoelectric composite structures has at-
tracted the attention of many researchers in recent years, such as Shen et al. (1999a,b) and Shen et al.
(2000). Kim and Jones (1996) have studied the behavior of brittle fracture at the interface between two
dissimilar piezoelectric materials. Beom and Atluri (1996) derived the complete form of stress and electric
displacement fields of an interfacial crack between two dissimilar anisotropic piezoelectric media. The plane
problem of a crack terminating at the interface of a bimaterial piezoelectric was treated by Qin and Yu
(1997). In particular, control of laminated structures including piezoelectric devices was the subject of
research by Tauchert (1996), Lee and Jiang (1996), Batra and Liang (1997), and Heyliger (1997). Many
piezoelectric devices comprise both piezoelectric and structural layers, and an understanding of the fracture
process of piezoelectric structural systems is of great importance in order to ensure the structural integrity
of piezoelectric devices (Shindo et al., 1998; Narita et al., 1999; Chen et al., 1998). Recently, Soh et al.
(2000) have investigated the behavior of a bi-piezoelectric ceramic layer with an interfacial crack by using
the dislocation density function and the singular integral equation method. To our knowledge, the electro-
elastic behavior of a piezoelectric ceramic with two parallel interface cracks subjected to an anti-plane shear
loading has not been studied despite the fact that many piezoelectric devices are constructed in a laminated
form by using the Schmidt method.

In the present paper, we consider the electro-elastic behavior of two parallel symmetry permeable in-
terface cracks in a piezoelectric layer bonded to two same half piezoelectric materials planes subjected to an
anti-plane shear is investigated using the Schmidt method (Morse and Feshbach, 1958). It is a simple and
convenient method for solving this problem. Fourier transform is applied and a mixed boundary value
problem is reduced to two pairs of dual integral equations. In solving the dual integral equations, the gaps
of two crack surface displacement are expanded in a series of Jacobi polynomials. This process is quite
different from that adopted in previous works (Han and Wang, 1999; Deeg, 1980; Pak, 1992; Sosa, 1992;
Suo et al., 1992; Park and Sun, 1995; Zhang and Tong, 1996; Gao et al., 1997; Wang, 1992; Narita et al.,
1999; Chen et al., 1998; Shen et al., 1999a,b; Shen et al., 2000; Kim and Jones, 1996; Beom and Atluri, 1996;
Qin and Yu, 1997; Soh et al., 2000). The form of solution is easy to understand. Numerical solutions are
obtained for the stress and electric displacement intensity factors for permeable crack surface conditions.
Note that the conducting crack condition is a special case of the permeable crack considered by other
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researchers (Parton, 1976; Zhank and Hack, 1992). Another main objective of the present study is to in-
vestigate the effect of the layer thickness, the distance between two cracks and the material constants of the
two dissimilar materials on the fracture behavior.

2. Formulation of the problem

Fig. 1 shows a layered structure made by bonding together two same half piezoelectric materials plane.
The piezoelectric materials layers are layer 2 and layer 3 of thickness /, with two parallel interface cracks of
length 2/ created. A Cartesian coordinate system (x, y, z) is positioned with its origin at the center between
two parallel interface cracks for reference purposes. Note that the z-axis is oriented in the poling direction
of the piezoelectric materials, and the x—y plane is the transversely isotropic plane. Also note that all
quantities with superscript k (k = 1, 2, 3, 4) refer to the upper half plane 1, the layer 2, the layer 3 and the
lower half plane 4 as in Fig. 1, respectively. The constitutive equations for the mode III crack can be ex-
pressed as

k k k k
o = el + el 0

k k k k
DY = el — o g (2)

where k =1, 2, 3, 4, 6, D; (j = x, y) are the anti-plane shear stress and in-plane electric displacement,

(k) (k) (1;)

respectively. ¢, , ejs, &, are the shear modulus, piezoelectric coefficient and dielectric parameter, respec-

tively. w® and ¢ are the mechanical displacement and electric potential, respectively. where cf,lﬂ = cf‘?,
@_ .06 o _ @4 2 _ 3 (1) _ @ 2 _ .0
Cag = Cyy> €15 = €15, €15 = €155 81 = &5 &1 = &1
The anti-plane governing equations are
c‘(‘ﬁ)vzw“) + e§§>v2¢<k> =0 (3)
VI — ) Vi = 0 “)

where k=1, 2, 3, 4, V> = 9*/0x? + 0?/0)”? is the two dimensional Laplace operator. Since no opening
displacement exists for the present anti-plane problem, the crack surfaces can be assumed to be in perfect
contact. Accordingly, permeable condition will be enforced in the present study, i.e., both the electric
potential and the normal electric displacement are assumed to be continuous across the crack surfaces. The
problem demonstrated in Fig. 1 will be solved under the following boundary conditions (In this paper, we
just consider the perturbation stress and the perturbation electric displacement field.)
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Fig. 1. Parallel interface cracks in the piezoelectric materials.



4488 Z.-G. Zhou, B. Wang | International Journal of Solids and Structures 39 (2002) 4485-4500

0'_5;)()@ k) = tf_(é)()@h’)7 Dil)(x, ht) = D;z)(x, ho), |x| > 1 (5)
w (e, k) = w@ (x,h0), W, ht) = ¢ (x, b)), |x| > 1 (6)
oW (x,h*)y =D (x,h) = -1, |x[<I (7)
1 — 2 - (1) — 4@ -
D/s)(xvth)_D)(;)(xvh )7 ¢ (X7h+)—(]5 (xah )7 |x|<l (8)
W, 07) =wP(x,07), 9P 07) =9 (x07), x>0 9)
o2 (x,0") =) (x,07), DP(x,0") =D (x,0), x| >0 (10)
oD e, —h") = 0P (x,~h"), D (x,—h") =DV (x,~h"),  |x|>1 (11)
W(s)(xv _h+) = W(4>()C, _h_)7 d)(})(xv _h+) = ¢(4)(x7 _h_)7 |X| > 1 (12)
o (x, —h") = O')(j) (x,—h") = —1q, x| <1 (13)
DG)()C? _h+) = D54) (x7 _h_)7 ¢(3)(xa _h+) = ¢(4>(xa h_)a |x‘ < ) (14)

where 1 is the uniform applied shear traction.

3. Solution

The solutions of Egs. (3) and (4) can be written as

M y=h (15)

wil(x,y) =2 [ 41 (s)e™ cos(sx) ds,
o (x,y) = 2w (x,y) +2 [7 Bi(s)e™ cos(sx) ds,
‘n

w@ (x,) =2 [(*[42(s)e™ + By (s)e”] cos(sx) ds,
2 ~ hzy=0 16
87 ) =) + 2 [FIC0)e 4 Dafs)e?eos(sx)ds, e
1
w (x,y) =2 [F[43(s)e” + Bs(s)e™] cos(sx) ds,
ge - 0=y>= —h 17
() = Bwey) + 2 [FCals)e” + Dls)e M cos(s)ds, )
w(x,y) =2 [17 Aa(s)e¥ cos(sx) ds,
B0 - < —h 18
¢W (x,y) = wH (x,3) +2 [ By(s)e” cos(sx) ds, 4 (18)
e

where 4, (s), Bi(s) (k =1, 2, 3, 4), C;(s) and D;(s) (j = 2, 3) are unknown functions.
Then, substituting Egs. (15)—(18) into the equation of equilibrium and charge equation of electrostatics,
we obtain
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D (63) = 2 5 s o) cos(s)ds e 5By Teos(ads,
DO (x,y) = &) 2 Jo7 sBi(s)e™ cos(sx) ds V=
y ’ 11z Jo 1 )
2 o0
o (x,y) = —#(2)E / s[A>(s)e™™ — By(s)e”] cos(sx) ds
’ 0
2 oo
- egzs); / s[Cy(s)e™ — Dy(s)e¥] cos(sx)ds, h=y=0
0
2 oo
Df) =& p /0 s[Ca(s)e™ — Dy(s)e”] cos(sx)ds, h=y=0
Oy = @2 [ o y
0, (x,y) = - s[A3(s)e” — B3 (s)e™™] cos(sx) ds
0
2 o]
+ egzs); / s[C3(s)e” — Dy(s)e V] cos(sx)ds, 0=>y> —h
0
2 [™ 5
DY = —¢f) p / s[Cs(s)e” — Ds(s)e ] cos(sx)ds, 0=y> —h
’ 0
o (x,) = uM2 [ sdy(s)e” cos(sx)ds + efy 2 [ sBa(s)e” cos(sx) ds, e
D (x,y) = 78(111)% Jo* sBa(s)e¥ cos(sx)ds, =

k k) (k
where u® = ) + el /el
Using boundary conditions (5)—(14), we obtain

—u V41 (s)e " — VB (s)e ™ = —u @ [Ar(s)e ™ = By(s)e™] — &2 [Cals)e~ — Da(s)e"]

1O As(s)e ™ = Bi(s)e"] + € [Cs(s)e ™" — Da(s)e™] = p da(s)e ™" + efy Ba(s)e ™
&Y Bi(s)e ™ = & [Ca(s)e ™" — Ds(s)e”]

—&7 [Ca(s)e ™" — Dy(s)e”] = =& By(s)e

Ay(s) + Ba(s) = As(s) + Bs(s), Ca(s) + Da(s) = Cs(s) + Ds(s)

As(s) — Ba(s) = —As(s) + Bs(s),  Cals) — Da(s) = —Cs(s) + Ds(s)

4489

(19)

(20)

(21)

(25)
(26)
(27)
(28)
(29a)
(29b)

The gap functions of the crack surface displacements and the electric potentials are defined as follows:

fix) = w (e, i) —wP(x, h7)
fdJl(x) = ¢(1>(x7 h+> - ¢(2)(x7 hi)
frx) = w (e, =" — w® (x, k")

S () = P (x, =h*) = ¢ (x, —h7)

(30)
(31)
(32)

(33)
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Substituting Egs. (15)—(18) into Egs. (30)-(33), and applying the Fourier transform, it can be obtained

jl (S) = Al (S)Cish — Az(S)CiSh — BQ(S)CSh (34)

_ e\ el o2

f¢1(S) = %Al(s)efsh — %Az(s)eiﬁl — (1_25)32(S)esh + Bl(S)eish — Cz(S)CiSh — DQ(S)eSh =0 (35)
€11 €11 11

fz(s) = A,;(s)e’”’ -+ B3 (s)e’h — A4(S)CiSh (36)

B % e oD

Sor(s) = %Aﬂs)e’sh + %B} (s)e™ 4 Cs(s)e™" 4 Ds(s)e™ — %A;;(s)e""h — By(s)e™™" =0 (37)
€1 €1 €1

A superposed bar indicates the Fourier transform throughout the paper. By solving 12 Egs. (25)—(28),
(29a), (29b) and (34)—(37) with 12 unknown functions and substituting the solutions into Egs. (19) and (24)
and applying the boundary conditions (7) and (13), it can be obtained (see Appendix A):

%/Owjl(s) cos(sx)ds =0, |x] > (38)
%/Ooofz(s) cos(sx)ds =0, |x| >1 )
% /0oo S[FG(s)fi(s) + FI(s)fa(s)] cos(sx) ds = =19, |x[ <! (40)
% /000 S[FI(s)f1(s) + FG(s) f»(s)] cos(sx) ds = —1¢, |x| <! @)
and
F() =0, fin(s)=0, fiu(x)=0, fp(x)=0  forallsandx (42)

where FG(s), lim FG(s) = FGC and FI(s) are known functions. FGC is a constant (see Appendix A).
From Egs. (38)—(41), it can be obtained

fils) = fals) = fi(x) = folx), 0 (x,h) = 02 (x,h) = 6 (x, —h) = 0|2 (x, —h) (43)
) _ pe _ nG _ P
D" (x,h) = DY (x,h) = D) (x, —h) = D\ (x, —h) (44)
To determine the unknown functions f;(s) and f3(s), the above two pairs of dual integral equations (38)—

(41) must be solved.

4. Solution of the dual integral equation

The Schmidt method (Morse and Feshbach, 1958) is used to solve the dual integral equations. The gap
function of the crack surface displacement is represented by the following series:

X

00 N\ 1/2
f1<x>=f2<x>=ZanP§,1/i‘/2>(l)(1—’1‘—2) , for —I<x<l, y=0 (45)

n=1

filx) = folx) = w (e, i) = w@(x, ") =0, for|x|>1, y=0 (46)
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where a, are unknown coefficients to be determined and P{'/>1/?)(x) is a Jacobi polynomial (Gradshteyn and
Ryzhik, 1980). The Fourier transform of (45) and (46) is (Erdelyi, 1954)

ol F(Zn —%)

(2n —2)! (47)

_ e 1
fils) = ;anGn;Jz,,,l(sl), G, = 2/a(-1)
where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.
Substituting (47) into Eqgs. (38)—(41), respectively. It can be shown that Eqgs. (38) and (39) are auto-
matically satisfied. After integration with respect to x in [—/,x], Eq. (40) reduces to
2 > a,G, / 1[FG(s) + FI(8))Jan_1 (s]) sin(sx) ds = —7ox (48)
T P 0 S

The semi-infinite integral in (35) can be modified as (Gradshteyn and Ryzhik, 1980)
sin[nsin~' (b/a)]

/oo 1 " , a> b
—J,(sa) sin(bs)ds = - (49)
o S a"sin(nm/2) b a

n[b + Vb2 — a?]" ’

The semi-infinite integral in Eq. (48) can be modified as:

/0 ) %[FG(S) + FI(s))J2,1(s]) sin(sx) ds = ;;G_Cl sin [(2,1 ~ 1)sin”! (;)}

+ / " LirG(s) = FGC + () (s sin(sx)ds (50)
0 S

Thus the semi-infinite integral in (48) can be evaluated directly. Eq. (48) can now be solved for the coef-
ficients a, by the Schmidt method (Morse and Feshbach, 1958). For brevity, (48) can be rewritten as

zoc:a,,E,,(x) =Ux), —-Il<x<l (51)

where E,(x) and U(x) are known functions and the coefficients a, are to be determined. A set of functions
P,(x) which satisfy the orthogonality condition

/ PP ) dr = Noby, N, = / P de (52)

I
can be constructed from the function, E,(x), such that
n M

P,(x) = iY;

i=1

Ei(x) (53)

where M;; is the co-factor of the element d;; of D,, which is defined as

-dllvdlladl_’n o 'adln-
d217d227d237 e '7d2n
d31ad32)d331-"7d3n i

_dn17d712;dn3; o 'adnn_
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Using Egs. (51)—(54), we obtain

oo Mnj ) 1 !
a, = ;qu—jj with ¢; = ]7, [} U(x)P;(x)dx (55)

5. Intensity factors

The coefficients a, are known, so that the entire perturbation stress field and the perturbation electric
displacement can be obtained. However, in fracture mechanics, it is of importance to determine the per-
turbation stress o,. and the perturbation electric displacement D, in the vicinity of the crack’s tips. o'}, 62,
a, o, DIV, DY), DY) and DY along the crack line can be expressed respectively as

O’/E;)(L h) = o'g) (x, h) = US) (x’ _h) — gi;‘) (x7 —h) =0,
:% ZanGn/ {FGC+ [FG(S) —FGC‘FH(S)]}Jzn,l(Sl) COS(XS)dS (56)
0

n=1

DV (x,h) = DY) (x, h) = D) (x, —h) = DY (x, —h) = D

y y y

Al

4,6, /0 “LFLC £ [FL(s) — FLC]} a1 (s1) cos(xs) ds (57)

n=1

where FL(s) is a known function. FLC is a constant (see Appendix A).

An examination of Egs. (56) and (57), the singular part of the stress field and the singular part of
the electric displacement can be obtained respectively from the relationship (Gradshteyn and Ryzhik,
1980):

coslnsin” (b/a)]
/0 Ju(sa) cos(bs)ds = \/ﬂn(fmﬁ)
VR —ab+ Vi —a)

The singular part of the stress field and the singular part of the electric displacement can be expressed
respectively as follows (I < x):

, a>b
(58)

, b>a

2FGC &
= - nGn]_]n 59
T = ;a (x) (59)
2FLC &
= - nGan 60
D = ;a (x) (60)
where
-1 "—ll2n—l
H,(x) = ) =1
VX2 = Plx 4 Vx2 = 1]
We obtain the stress intensity factor K as
. 4FGC S\ T(2n—1)
K=l Vol =D === 3 ooy o
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We obtain the electric displacement intensity factor K” as

ES _1
KP = lim 2n(x—l).D:_4FZ_CZnF(2n 2)_FLC

_ 2
vyt Vi & =2 T FaC (62)

6. Numerical calculations and discussion

This section presents numerical results of several representative problems. Adopting the first 10 terms in
the infinite series (51), we followed the Schmidt procedure. From the literatures (see e.g. Itou, 1978; Zhou
et al., 1999a,b), it can be seen that the Schmidt method performs satisfactorily if the first 10 terms of the
infinite series (51) are retained. The solution does not change with an increase of the number of terms in (51)
beyond 10. The precision of present solution can satisfy the demands of the practical problem. The pi-
ezoelectric layer and the piezoelectric half plane are assumed to be the commercially available piezoelectric
PZT-4 or PZT-5H, respectively. The engineering material constants of PZT-4 are cqy = 2.56(x 10! N/m?),
e;s = 12.7 (c/m?), & = 64.6(x1071° ¢/Vm?), respectively. The material constants of PZT-5H are
caq = 2.3(x 10" N/m?), e;5 = 17.0 (c/m?), &; = 150.4(x1071° ¢/Vm?), respectively. The results of the pre-
sent paper are shown in Figs. 2-9. From the results, the following observations are very significant:

(1) The stress and the electric displacement intensity factors not only depend on the crack length and the
width of the piezoelectric layer, but also on the properties of the materials.

1.8

16

K/TO

14

00 15 30 45 60
h

Fig. 2. The stress intensity factor versus / for / = 1.0 (materials of the upper and the lower half planes are PZT-4 and the material of
the interlayer is PZT-5H).

Fig. 3. The electric displacement intensity factor versus / for / = 1.0 (materials of the upper and the lower half planes are PZT-4 and
the material of the interlayer is PZT-5H).



4494 Z.-G. Zhou, B. Wang | International Journal of Solids and Structures 39 (2002) 4485-4500

24

10 12 1’.411'.6 18 20

Fig. 4. The stress intensity factor versus / for 2 = 1.0 (materials of the upper and the lower half planes are PZT-4 and the material of the

interlayer is PZT-5H).

L

KP/t(10°)

10 12 14 16 18 20
Fig. 5. The electric displacement intensity factor versus / for # = 1.0 (materials of the upper and the lower half planes are PZT-4 and the

material of the interlayer is PZT-5H).

10 12 14 16 18 20
Fig. 6. The stress intensity factor versus / for # = 1.0 (materials of the upper and the lower half planes are PZT-5H and the material of

the interlayer is PZT-4).
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n ! " L

L 3

36

KP/t(10)
g

10 12 14 16 18 20
/

Fig. 7. The electric displacement intensity factor versus / for # = 1.0 (materials of the upper and the lower half planes are PZT-5H and

the material of the interlayer is PZT-4).
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Fig. 8. The stress intensity factor versus / for / = 1.0 (materials of the upper and the lower half planes are PZT-5H and the material of

the interlayer is PZT-4).

20—
00 15 30 45 60
h

Fig. 9. The electric displacement intensity factor versus / for / = 1.0 (materials of the upper and the lower half planes are PZT-5H and
the material of the interlayer is PZT-4).

(i1) In contrast to the impermeable crack surface condition solution, it is found that the perturbation
electric displacement intensity factor for the permeable crack surface conditions is much smaller than the
results for the impermeable crack surface conditions as shown in Zhou’s paper (Zhou and Shen, 1999).
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(1ii) The stress and the electric displacement intensity factors increases as the distance between the par-
allel cracks increases as shown in Figs. 2, 3, 8, and 9. This phenomenon is called crack shielding effect
as discussed in Ratwani’s paper (Ratwani and Gupta, 1974). The stress intensity factors increases
as the distance between the parallel cracks increases. However, the shield effects will be very small for
h>2.0.

(iv) The stress intensity factors and the electric displacement intensity factors of the parallel cracks in-
crease as the length of cracks increases as shown in Figs. 4-7. Noting this fact, experiments indicate that the
piezoelectric materials with smaller cracks are more resistant to fracture than those with larger cracks.

(v) On the other hand, one should bear in mind that the large stress and electric field concentration in the
region around the crack tips may induce domain switching effects as discussed in Fulton’s paper (Fulton
and Gao, 1997). Such nonlinear effect may change the results greatly. In the present analysis, we neglect
such effect, and only consider the linear behavior of the materials.

Acknowledgements
The authors are grateful for financial support from the Post Doctoral Science Foundation of Hei Long
Jiang Province, the Natural Science Foundation of Hei Long Jiang Province, the National Science

Foundation with the Excellent Young Investigator Award and the Scientific Research Foundation of
Harbin Institute of Technology (HIT.2000.30).

Appendix A

Hi=(1-e*), H=(1+e*), F=:el, F=-4m)d)elely,
B = 2He) e el [Hom + i), Fo = Hel &Y

Fs = —2Heel) o\ (Hi + Howa),  Fo = Hiel) e [Hygd + 2Hop o + Hid),

Fy = =4t e el el R = —2ma)) e el [ + Hipw),

Fo = 4l e el e [Hiy + How),  Fio = 2Hiel) ey [Hut + 2By + Hygsl,

2 (@
eis)eis) [Hpy + Hipy),

2 2 2 2 3
Fiy = 6H: &) el ey, Fi = 4Hel) &)
3 2 2 4 2
Fis = —2Hel) e} el [Hipy + Hapo),  Fia = Hyel) e} [Hi + 2Hopy iy + Hy ),

FF=R+bh+B+FR+F+F+FH+FK+F+Fo+ A+ Fo+ A + Fa,

0% () _aps 2% (1t
G = _H18(11> ‘355) e ¥ Hy, Ga= _H18§1> 9(15) Ha,
H* 2)? 2 2)?
G; = *H123<11> 1 (6(15) - 851)#2)655) )
2)?

H* 2 2 1) (2 ) (2
Gy = ng(n) #1(3(15 - 851)#2)8&)(#1}12 + wHy), Gs= 2H1H28§1)3§1> :“2655) €§5),

.2 1)? 2 2)? 2 1 (2
Gs = ng(“)ggl) ﬂzeis) o + Hip,), G = 2H128§1) 8&1)#1 (6(15) - 8(11),“2)655)625>7
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Gy = H1311 611 Hlels (2H2/12+H1/11) Gy = *2H23§l1)33§21)3H1H2(H1H2JF,“zHl)v
Gro = ~2#1 sl a1, G = —Hial 6 g + Hig),
G = H28511>28§21)3e<115)2/12(2H2,“1 +Hi,), Gi= H1811 8?1) 3(115) 615 (#1Hl + ),
GG =01+ G+ Gy + Gy + Gs + Go + G+ Gs + Gy + Gy + G + Gia + G,
FG(s) = GG/FF,
I = —2H18(121)4€(1]5)4672h5/127 L= 2H1811 8(121>,“%(915) - 851 e ",
L= 4H18(111>8§21)3e(115>36(125)e’2’”,u2, Iy = 4H18§11)8(121)4e§15)ze’2hsu1,uz,
Is = —4H2311 8(11 e 21%#%#2, Is = —4H18(111)28521>3e(lls)e(l?e’m,ul,uz,
I = *2H1311 3(11 e iy, Iy = 2H13<111>23<121)3e(lls)zefzhsllz(zHZHl + Hip),
b= el e e e,
H=0+h+L+L+1s+1g+ 1+ I+ I,
FI(s) = Il /FF,
L= He o 4 26 4 1y L — 0
Ly = _2H1811 ‘3(121) 655 ey, Li= _H18<111>48(121>Ze§25)ﬂ1 (s + poHy),
Ls = —Hyely &) e\ oy Ho + oy + 2pe72"),
Ls = _Hlsu 8521) e(lls) 915 ( Hy 4 e + 20, Hy),
L; = _H18(111)38(121)3e(125)ul (mHy — 2#237% + 1H,),
Ls = —Hyz) 8521) ejyely (2,“1H1 26" — uyHy),
Ly = *28(111)38(121)36(11;/‘2972}15(2#11{2 + ),
Lig = —ef)) e} el (1 4+ 664 ¢y + (1 — e )],
LL=Li+Lo+Ly+Ls+Ls+ Le+ L7+ Lg + Lo + Lyo,

FL(s) = LL/FF,

1 0 @2 1) (27 n* ) (2° 2)*
Fie = 3§1> 655) o dhe = _4851) 851)655)355) RS _23(11> s(“>e(15) (M + 1), Fic= 851) s 5
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2% (1)? D oeF 1P o
Fse = *2851)3(11) 655) ( + 1),  Foe = 3(11 811 (,“1 + 21 + /12) Fe = *4851)3(13 egs) 9(15>a

1?7 (2 (1) 2 27 () (@
Fye = _28(11) 851) e(15> (1 + 1), Foo =4y &) 8(15)5(15>(ﬂ1 + 1),

1?2 (22 (1) (2
Fioe = 2311 311 (.“1 + 2ty 4 13),  Fie= 63(11> 3(11) egs) e(IS) )
D* 2% (1) (2
Fioe = 4321) 3$1> 655)655)0‘1 + .“2)7

) (2?2 (2)? 1)
Fis. = _23(11) 3(11) 655) ( + 1), Fuae = &§1 ‘511 (.“1 + 2 + :“2)

FFC:EL +F‘26+F§L +F;k +Fv5c +F'66+F76+FéC+F‘96+F106+F'116+F'12C +F'13c +F'14c7

2% (* * 2)? 2 2)?
Goe = *851) e(15> o,  Gi = *8(11) 1y (6(15) - 851),“2)6(15) )

H* 2)? 2 2 1) ()7 ) @
Gy = 851) Ml(egs) - 821>M2)3§1)(ﬂ1 + 1), Gse= 2351)853 ﬂze§5> 655)7

) @ 2)? 2 1) (2
Gec 851)311) :“zels (2,“1 + 1), G = ngl) 851),“1 (6(15) - 8%1)#2)9(15)6(15)7

1) () 1) (2)?
Gs. = ‘051) 3&1 ﬂle15 (2ﬂ2 +1),  Goo = _23§1> 8(11> o (fy + 1),

1?2 (2 ) (2 12 (24
Gioe = _2351> 851) Nlﬂzegs)egs)v G = _3§1> 351> o (W + 1),

2 2

1?2 (27 (1)? 1?7 (2% (1
G = 8(11> 8(11) ‘3(15) (2 + 1), Gise = *3<11) 3(11) 3(15) 315 (/‘1 + 1),

GGC = Gy + Gsec + Gye + Gse + Goe + Gie + G + Goe + Gioe + Giie + Grae + Gise,
FGC = GGC/FFC,

2% 1) n* 2 (2)° n* (2?7 (2
Lie= 8%1)3(11) egs) oy Lo = 8%1) 8§1)6§5) ty  Lae = _Sgl) 851) e(ls)ﬂl(ﬂl + 1),

02 ¢ )? (27 (1
Lse = =&} &) el i (p + 1), Lo = —2y) &1) 3(15) el? (= + i),

m 23 2 1 2
Ly = =& e} e + ), Lse = 851) ‘ggl) ¢gely (2”1 #a),

D* ©2°
Ly = —8(11> 8(11> 6(15).“2(#1 + 1),

LLC = Ly + Lye + Lac + Lse + Loe + L7e + Lse + Lioc,
FLC = LLC/FFC,

lim FG(s) = FGC, lim FL(s) = FLC, lim FI(s) =0,

§—00 §—00 §—00
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